
J. Mol. Model. 1997, 3, 312 – 314

© Springer-Verlag 1997

$ Presented at the 11. Molecular Modeling Workshop, 6 -7
May 1997, Darmstadt, Germany

Introduction

 We study the genetic algorithm (GA) [1] for protein struc-
ture prediction as it has a large application potential [2]. The
field, including the advantages of GA in the large combina-
torial space of protein folding is reviewed in [3,4]. With our
approach we could achieve tertiary fold prediction from se-
quence and predicted secondary structure for four helix bun-
dles (RMSD around 6 Å,[5]). Further, exploiting available
secondary structure information (DSSP) the fold for 19 dif-
ferent protein topologies was succesfully delineated (proteins
less than 100 amino acids in size, not more than eight sec-
ondary structure elements, RMSD around 4.5-5.5 Å on aver-
age; [6]).

Though promising, these results as well as efforts from
other groups including blind tests [7], predictions of small
helical and strand containing proteins [8] and peptide libraby

assemblies for fold prediction [9] illustrate at the same time
that despite the advantages of the GA, protein structure pre-
diction is still a challenge.

Thus we currently explore prediction improvement by
refining the search strategy,combining the GA prediction with
experimental data for a more complete picture of the protein
and feeding experimental information as additional fitness
criteria directly into the model prediction made by the GA.

Methods

Protein folding simulations are achieved modeling the
mainchain using internal coordinates and standard confor-
mations [5]. Starting from random structures and known or
predicted secondary structure, the fitness function selected
for growth and cooperativity in the secondary structure, glo-
bal and hydrophobic packing, clash free structures and pro-
moted formation of beta-strand regions. Details of the ge-
netic algorithm and the fitness function used are described in
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[6]. The simplified hp standard protein model is used in the
first part of our results.It considers only two types of amino
acids,hydrophobic and hydrophilic, details are described in
[10].

Results and Discussion

Development of improved search strategies

Starting from the simple genetic algorithm [1] different pa-
rameters such as mutation rate, number of cross-over sites
and population size are examined. However, focus is on modi-
fied search strategies which should improve searching for
the correct protein structure by the genetic algorithm. Dif-
ferent crowding and elitist searching strategies are examined
to keep the population rich and diverse while not compro-
mising effective searching and convergence. To test these ef-
ficiently, simulations are run in the context of square lattice
hp protein models in two dimensions. Similar versions in
three dimensions are also investigated.

Table 1 shows a search strategy against crowding found
to be promising, “pioneer search”, which was advantageous
in comparison to our standard simulations under most of the
parameter conditions tested and will be examined in detail
further including its performance in more complex models.

The strategy “pioneers” new search space every ten gen-
erations. At this check point, all individuals of the new gen-
eration have to be different from any individual of the previ-
ous generation to search for new protein structures during
the run. Individuals which are identical to previous ones are
discarded and two new parents are randomly selected ac-
cording to fitness (using normal roulette-wheel parent selec-
tion) from the old population to generate an alternative indi-
vidual which again is only accepted if it is different from the
previous population.

Several variations of this scheme were also tested, for
instance “incest” (replace the individual which is found to
be identical to previous generation by one from remating
with the fitter parent) or “promiscuity” which accepts the
result of any random mating within the previous population
as a replacement without another check but were less suc-
cessful in this comparison.

Combining experimental approaches and GA model predic-
tion

Independent experimental approaches can advantageously
complement the GA prediction. They can be exploited to
rule out wrong structures and to point to domains where the
GA prediction should concentrate on. Such combined pre-
dictions depend heavily on a close interaction between ex-
periment and molecular model. Rejecting predictions by con-
flicting experimental data is in many parts still non auto-
mated and thus includes some element of subjectivity. How-
ever, violation of experimentally measured and known sec-

ondary structure content or violation of known distance con-
straints by model predictions can be objectively measured
and quantified and were useful to reject wrong predictions
by these criteria.

A case in point is a strongly hydrophobic viral protein
(EP5) which hampers accumulation of sufficient quantities
for crystallization. Spectroscopic data indicate a low amount
of helix content and help to define domainal boundaries. Fig-
ure 1 shows our current model which best fits the experimen-
tal data accumulated so far. Further studies will aim to verify
the different topological vicinities predicted by the genetic
algorithm model.

Direct incorporation of experimental data as additional fit-
ness criteria

Experimental data can be even more tightly connected to the
GA model if used as additional fitness criteria. A systematic

Table 1. Results for a 20 residue chain hp model simulation
in 2D comparing the genetic algorithm in standard form
(Goldberg, 1989) versus its improvement by an anti-crowding
strategy (see text). Given is the amount of times the global
energy minimum conformation was found in ten simulations
under various conditions of population size (popsize),mutation
rate (pmutation) and cross-over (pcross).

popsize pmut pcross GA GA

unmodified PS [a]

200 0.05 0.2 6 10

200 0.1 0.2 9  9

200 0.15 0.2 3  2

200 0.05 0.5 5  8

200 0.1 0.5 9  9

200 0.15 0.5 2  2

200 0.05 0.8 5  9

200 0.1 0.8 6  8

200 0.15 0.8 3  2

400 0.05 0.2 8 10

400 0.1 0.2 8  9

400 0.15 0.2 4  2

400 0.05 0.5 7 10

400 0.1 0.5  10  7

400 0.15 0.5 5  2

400 0.05 0.8 6 10

400 0.1 0.8 8  7

400 0.15 0.8 2  2

[a] pioneer search
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exploration of the effect of experimental information on pre-
diction accuracy on smaller protein structures and domains,
utilizing readily available experimental data such as cross-
linking data, iron-sulfur clusters, chelating residues, core resi-
dues and important catalytic residues is currently conducted.

In this context we also examine disulfide bonds and their
effect on improving protein structure resolution. Different
potentials were tested. The square root of the sum of the dis-
tance square deviation from the optimal distance yielded best
results in test runs on proteins with known three dimensional
structure and exploiting a known connectivity of disulfide
bonds.

Further, including this fitness parameter, predictions for
pathogenic amoebapore proteins and mammalian NK-lysin
could be obtained [11]. Figure 2 shows the structure of a
related non pathogenic amoebapore protein as currently pre-
dicted based on our genetic algorithm approach. The some-
what loosened up bundle structure could be implicated in its
non pathogenicity. This result will be followed up by further
simulations and comparisons. Different non pathogenic
amoebapore sequences are studied together with experimen-
tal tests to reveal and understand differences to pathogenic
amoebapores.

Outlook

Future work will extend our efforts in the three areas of re-
search presented. By combining the advantages of each we
also want to tackle larger protein structures.

Supplementary material: 3D coordinates of the structures
shown in Figure 1 and 2 are available as PDB-file.
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Figure 1. Viral hydrophobic protein EP5. Result of the genetic
algorithm simulation. The low helical content and overall
shape agree well with the available experimental data
collected so far, further tests will examine the details of the
topological vicinities predicted. The main chain trace is shown
in blue, helical regions are shown in yellow.

Figure 2. Predicted structure for a non pathogenic amoeba-
pore peptide. Using standard secondary structure prediction,
RMSD error on four helical bundles with known crystal
structure was found to be around 6 Å [5].
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